Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Pathogens ; 13(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668235

RESUMO

This study describes clinical manifestations of highly pathogenic avian influenza (HPAI) H5N1, H5N8 and H5N6 outbreaks between 2014 and 2018 and 2020 and 2022 in the Netherlands for different poultry types and age groups. Adult duck (breeder) farms and juvenile chicken (broiler and laying pullet) farms were not diagnosed before 2020. Outbreaks in ducks decreased in 2020-2022 vs. 2014-2018, but increased for meat-type poultry. Neurological, locomotor and reproductive tract signs were often observed in ducks, whereas laying- and meat-type poultry more often showed mucosal membrane and skin signs, including cyanosis and hemorrhagic conjunctiva. Juveniles (chickens and ducks) showed neurological and locomotor signs more often than adults. Diarrhea occurred more often in adult chickens and juvenile ducks. Mortality increased exponentially within four days before notification in chickens and ducks, with a more fluctuating trend in ducks and meat-type poultry than in layers. For ducks, a mortality ratio (MR) > 3, compared to the average mortality of the previous week, was reached less often than in chickens. A lower percentage of laying flocks with MR > 3 was found for 2020-2022 vs. 2014-2018, but without significant differences in clinical signs. This study provides a basis for improvements in mortality- and clinical-sign-based early warning criteria, especially for juvenile chickens and ducks.

2.
Viruses ; 16(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675966

RESUMO

A devastating bluetongue (BT) epidemic caused by bluetongue virus serotype 3 (BTV-3) has spread throughout most of the Netherlands within two months since the first infection was officially confirmed in the beginning of September 2023. The epidemic comes with unusually strong suffering of infected cattle through severe lameness, often resulting in mortality or euthanisation for welfare reasons. In total, tens of thousands of sheep have died or had to be euthanised. By October 2023, more than 2200 locations with ruminant livestock were officially identified to be infected with BTV-3, and additionally, ruminants from 1300 locations were showing BTV-associated clinical symptoms (but not laboratory-confirmed BT). Here, we report on the spatial spread and dynamics of this BT epidemic. More specifically, we characterized the distance-dependent intensity of the between-holding transmission by estimating the spatial transmission kernel and by comparing it to transmission kernels estimated earlier for BTV-8 transmission in Northwestern Europe in 2006 and 2007. The 2023 BTV-3 kernel parameters are in line with those of the transmission kernel estimated previously for the between-holding spread of BTV-8 in Europe in 2007. The 2023 BTV-3 transmission kernel has a long-distance spatial range (across tens of kilometres), evidencing that in addition to short-distance dispersal of infected midges, other transmission routes such as livestock transports probably played an important role.


Assuntos
Vírus Bluetongue , Bluetongue , Epidemias , Sorogrupo , Animais , Bluetongue/epidemiologia , Bluetongue/transmissão , Bluetongue/virologia , Vírus Bluetongue/classificação , Países Baixos/epidemiologia , Ovinos , Bovinos , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão
3.
Emerg Infect Dis ; 30(1): 50-57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040665

RESUMO

The number of highly pathogenic avian influenza (HPAI) H5-related infections and deaths of wild birds in Europe was high during October 1, 2020-September 30, 2022. To quantify deaths among wild species groups with known susceptibility for HPAI H5 during those epidemics, we collected and recorded mortality data of wild birds in the Netherlands. HPAI virus infection was reported in 51 bird species. The species with the highest numbers of reported dead and infected birds varied per epidemic year; in 2020-21, they were within the Anatidae family, in particular barnacle geese (Branta leucopsis) and in 2021-22, they were within the sea bird group, particularly Sandwich terns (Thalasseus sandvicensis) and northern gannet (Morus bassanus). Because of the difficulty of anticipating and modeling the future trends of HPAI among wild birds, we recommend monitoring live and dead wild birds as a tool for surveillance of the changing dynamics of HPAI.


Assuntos
Charadriiformes , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Países Baixos/epidemiologia , Animais Selvagens , Aves , Patos
4.
Insects ; 14(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37504643

RESUMO

The vector/host ratio and host preference are important parameters for the modelling of vector-borne livestock diseases. It can be anticipated that Culicoides abundance is not homogeneously distributed in the landscape. We investigated the influence of host species (dairy cow, sheep, and a light-trap (LT) as a surrogate host) and distance of measurement to hosts on Culicoides abundance using a randomized block-design with 12 measuring days and seven 3-min aerial sweep-netting sessions per whole hour at three distances to the host (0, 10, and 25 m), from five hours before to and including one hour after sunset. Dairy cows were found to be a far stronger attractor of Culicoides midges than sheep, while both hosts were far stronger attractors of midges than the LT. Culicoides abundance declined significantly with increasing distance from the livestock hosts; this phenomenon was much stronger for dairy cows than for ewes. In contrast, Culicoides abundance increased with increasing distance from the LT, pin-pointing the apparent shortcomings of the LT as a surrogate host to lure midges. Our data indicate that livestock host species and the distance from these hosts have a profound effect on Culicoides abundance in the landscape.

5.
Pathogens ; 11(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558868

RESUMO

Wind-supported transport of particle matter (PM) contaminated with excreta from highly pathogenic avian influenza virus (HPAIv)-infected wild birds may be a HPAIv-introduction pathway, which may explain infections in indoor-housed poultry. The primary objective of our study was therefore to measure the nature and quantity of PM entering poultry houses via air-inlets. The air-inlets of two recently HPAIv-infected poultry farms (a broiler farm and a layer farm) were equipped with mosquito-net collection bags. PM was harvested every 5 days for 25 days. Video-camera monitoring registered wild bird visits. PM was tested for avian influenza viruses (AIV), Campylobacter and Salmonella with PCR. Insects, predominantly mosquitoes, were tested for AIV, West Nile, Usutu and Schmallenberg virus. A considerable number of mosquitoes and small PM amounts entered the air-inlets, mostly cobweb and plant material, but no wild bird feathers. Substantial variation in PM entering between air-inlets existed. In stormy periods, significantly larger PM amounts may enter wind-directed air-inlets. PM samples were AIV and Salmonella negative and insect samples were negative for all viruses and bacteria, but several broiler and layer farm PM samples tested Campylobacter positive. Regular wild (water) bird visits were observed near to the poultry houses. Air-borne PM and insects-potentially contaminated with HPAIv or other pathogens-can enter poultry air-inlets. Implementation of measures limiting this potential introduction route are recommended.

6.
Pathogens ; 11(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35631070

RESUMO

Highly pathogenic avian influenza viruses' (HPAIVs) transmission from wild birds to poultry occurs globally, threatening animal and public health. To predict the HPAI outbreak risk in relation to wild bird densities and land cover variables, we performed a case-control study of 26 HPAI outbreaks (cases) on Dutch poultry farms, each matched with four comparable controls. We trained machine learning classifiers to predict outbreak risk with predictors analyzed at different spatial scales. Of the 20 best explaining predictors, 17 consisted of densities of water-associated bird species, 2 of birds of prey, and 1 represented the surrounding landscape, i.e., agricultural cover. The spatial distribution of mallard (Anas platyrhynchos) contributed most to risk prediction, followed by mute swan (Cygnus olor), common kestrel (Falco tinnunculus) and brant goose (Branta bernicla). The model successfully distinguished cases from controls, with an area under the receiver operating characteristic curve of 0.92, indicating accurate prediction of HPAI outbreak risk despite the limited numbers of cases. Different classification algorithms led to similar predictions, demonstrating robustness of the risk maps. These analyses and risk maps facilitate insights into the role of wild bird species and support prioritization of areas for surveillance, biosecurity measures and establishments of new poultry farms to reduce HPAI outbreak risks.

7.
Pathogens ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34832653

RESUMO

(1) Background: Highly pathogenic avian influenza (HPAI) is a viral infection characterized by inducing severe disease and high levels of mortality in gallinaceous poultry. Increased mortality, drop in egg production or decreased feed or water intake are used as indicators for notification of suspicions of HPAI outbreaks. However, infections in commercial duck flocks may result in mild disease with low mortality levels, thereby compromising notifications. (2) Methods: Data on daily mortality, egg production, feed intake and water intake from broiler and breeder duck flocks not infected (n = 56 and n = 11, respectively) and infected with HPAIV (n = 13, n = 4) were used for analyses. Data from negative flocks were used to assess the baseline (daily) levels of mortality and production parameters and to identify potential threshold values for triggering suspicions of HPAI infections and assess the specificity (Sp) of these thresholds. Data from infected flocks were used to assess the effect of infection on daily mortality and production and to evaluate the sensitivity (Se) of the thresholds for early detection of outbreaks. (3) Results: For broiler flocks, daily mortality > 0.3% (after the first week of production) or using a regression model for aberration detection would indicate infection with Se and Sp higher than 80%. Drops in mean daily feed or water intake larger than 7 g or 14 mL (after the first week of production), respectively, are sensitive indicators of infection but have poor Sp. For breeders, mortality thresholds are poor indicators of infection (low Se and Sp). However, a consecutive drop in egg production larger than 9% is an effective indicator of a HPAI outbreak. For both broiler and breeder duck flocks, cumulative average methods were also assessed, which had high Se but generated many false alarms (poor Sp). (4) Conclusions: The identified reporting thresholds can be used to update legislation and provide guidelines to farmers and veterinarians to notify suspicions of HPAI outbreaks in commercial duck flocks.

8.
Sci Rep ; 11(1): 12779, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140601

RESUMO

In the Netherlands, free-range layer farms as opposed to indoor layer farms, are at greater risk with regard to the introduction of avian influenza viruses (AIVs). Wild waterfowl are the natural reservoir hosts of AIVs, and play a major role in their transmission to poultry by contaminating free-range layer areas. The laser as a wild bird repellent has been in use since the 1970s, in particular around airfields to reduce bird-strike. The efficacy of laser for reducing wild bird numbers in and around free-range poultry areas has however not been investigated. During the autumn-winter, wild bird visits to the free-range area of a layer farm was surveilled by video-camera for a month without laser, followed by a month with laser. The automated laser (Class-III B qualification) was operated in two separate areas (i) within the poultry free-range area that directly bordered the poultry barn between 5:00 p.m. and 10:00 a.m. when poultry were absent (free-range study area, size 1.5 ha), and (ii) in surrounding grass pastures between 10:00 a.m. and 5:00 p.m. The overall (all bird species combined) efficacy of the laser for reducing the rate of wild birds visiting the free-range study area was 98.2%, and for the Orders Anseriformes and Passeriformes, respectively, was 99.7% and 96.1%. With the laser in operation, the overall exposure time of the free-range area to wild bird visits, but specifically to the Order Anseriformes, was massively reduced. It can be concluded that the Class-III B laser is highly proficient at keeping wild birds, in particular waterfowl, away from the free-range area of layer farms situated along a winter migration flyway.

9.
PLoS One ; 16(2): e0246565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556122

RESUMO

In 2006 and 2007, sheep and cattle farms in the Netherlands were affected by an epidemic of bluetongue virus serotype 8 (BTV-8). In order to obtain insight into the within-farm spread of the virus, five affected cattle and five affected sheep farms were longitudinally monitored between early 2007 and mid or late 2008. The farms were visited between four and seven times to collect blood samples. During each visit, all animals present in the flock or herd were sampled. The samples were analysed for the presence of BTV-8 antibodies (ELISA) and BTV-8 antigen (rRT-PCR). The observed patterns of RT-PCR positives indicate a rapid within-farm virus spread during the vector season. During vector-free periods we observed a complete rRT-PCR positivity decline within a few months. During the vector season a lower bound estimate of the basic reproduction number (R0) ranges from 2.9-6.9 in the cattle herds (one herd not analysed), and from 1.3-3.2 in the sheep flocks in this study.


Assuntos
Vírus Bluetongue/patogenicidade , Doenças dos Bovinos/virologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Fazendas/estatística & dados numéricos , Países Baixos/epidemiologia , Sorogrupo , Ovinos
10.
Transbound Emerg Dis ; 68(1): 127-136, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32506770

RESUMO

Poultry can become infected with avian influenza viruses (AIV) via (in) direct contact with infected wild birds. Free-range chicken farms in the Netherlands were shown to have a higher risk for introduction of low pathogenic avian influenza (LPAI) virus than indoor chicken farms. Therefore, during outbreaks of highly pathogenic avian influenza (HPAI), free-range layers are confined indoors as a risk mitigation measure. In this study, we characterized the seasonal patterns of AIV introductions into free-range layer farms, to determine the high-risk period. Data from the LPAI serological surveillance programme for the period 2013-2016 were used to first estimate the time of virus introduction into affected farms and then assess seasonal patterns in the risk of introduction. Time of introduction was estimated by fitting a mathematical model to seroprevalence data collected longitudinally from infected farms. For the period 2015-2016, longitudinal follow-up included monthly collections of eggs for serological testing from a cohort of 261 farms. Information on the time of introduction was then used to estimate the monthly incidence and seasonality by fitting harmonic and Poisson regression models. A significant yearly seasonal risk of introduction that lasted around 4 months (November to February) was identified with the highest risk observed in January. The risk for introduction of LPAI viruses in this period was on average four times significantly higher than the period of low risk around the summer months. Although the data for HPAI infections were limited in the period 2014-2018, a similar risk period for introduction of HPAI viruses was observed. The results of this study can be used to optimize risk-based surveillance and inform decisions on timing and duration of indoor confinement when HPAI viruses are known to circulate in the wild bird population.


Assuntos
Galinhas , Fazendas , Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Surtos de Doenças/veterinária , Influenza Aviária/virologia , Países Baixos/epidemiologia , Óvulo/virologia , Doenças das Aves Domésticas/virologia , Prevalência , Fatores de Risco , Estações do Ano , Estudos Soroepidemiológicos
11.
Transbound Emerg Dis ; 68(1): 88-97, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32418364

RESUMO

In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg-producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017-2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.


Assuntos
Galinhas , Surtos de Doenças/veterinária , Patos , Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Vírus da Influenza A Subtipo H5N8/fisiologia , Vírus da Influenza A/classificação , Influenza Aviária/virologia , Países Baixos/epidemiologia , Doenças das Aves Domésticas/virologia
12.
Sci Rep ; 10(1): 12388, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709965

RESUMO

The estimation of farm-specific time windows for the introduction of highly-pathogenic avian influenza (HPAI) virus can be used to increase the efficiency of disease control measures such as contact tracing and may help to identify risk factors for virus introduction. The aims of this research are to (1) develop and test an accurate approach for estimating farm-specific virus introduction windows and (2) evaluate this approach by applying it to 11 outbreaks of HPAI (H5N8) on Dutch commercial poultry farms during the years 2014 and 2016. We used a stochastic simulation model with susceptible, infectious and recovered/removed disease stages to generate distributions for the period from virus introduction to detection. The model was parameterized using data from the literature, except for the within-flock transmission rate, which was estimated from disease-induced mortality data using two newly developed methods that describe HPAI outbreaks using either a deterministic model (A) or a stochastic approach (B). Model testing using simulated outbreaks showed that both method A and B performed well. Application to field data showed that method A could be successfully applied to 8 out of 11 HPAI H5N8 outbreaks and is the most generally applicable one, when data on disease-induced mortality is scarce.


Assuntos
Influenza Aviária/epidemiologia , Aves Domésticas/virologia , Animais , Surtos de Doenças , Fazendas , Influenza Aviária/mortalidade , Influenza Aviária/transmissão , Modelos Estatísticos , Fatores de Tempo
13.
Front Vet Sci ; 7: 237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478107

RESUMO

Wild birds are the natural reservoir of the avian influenza virus (AIV) and may transmit AIV to poultry via direct contact or indirectly through the environment. In the Netherlands, a clinically suspected free-range layer flock was reported to the veterinary authorities by the farmer. Increased mortality, a decreased feed intake, and a drop in egg production were observed. Subsequently, an infection with low pathogenic avian influenza virus was detected. This study describes the diagnostic procedures used for detection and subtyping of the virus. In addition to routine diagnostics, the potential of two different environmental diagnostic methods was investigated for detecting AIV in surface water. AIV was first detected using rRT-PCR and isolated from tracheal and cloacal swabs collected from the hens. The virus was subtyped as H10N7. Antibodies against the virus were detected in 28 of the 31 sera tested. An intravenous pathogenicity index (IVPI) experiment was performed, but no clinical signs (IVPI = 0) were observed. Post-mortem examination and histology confirmed the AIV infection. Multiple water samples were collected longitudinally from the free-range area and waterway near the farm. Both environmental diagnostic methods allowed the detection of the H10N7 virus, demonstrating the potential of these methods in detection of AIV. The described methods could be a useful additional procedure for AIV surveillance in water-rich areas with large concentrations of wild birds or in areas around poultry farms. In addition, these methods could be used as a tool to test if the environment or free-range area is virus-free again, at the end of an AIV epidemic.

14.
Anim Microbiome ; 2(1): 28, 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-33499947

RESUMO

BACKGROUND: Laying hens with access to outdoor ranges are exposed to additional environmental factors and microorganisms, including potential pathogens. Differences in composition of the cloacal microbial community between indoor- and outdoor-housed layers may serve as an indicator for exposure to the outdoor environment, including its pathogens, and may yield insights into factors affecting the chickens' microbiota community dynamics. However, little is known about the influence of outdoor housing on microbiota community composition in commercial layer flocks. We performed a cross-sectional field study to evaluate differences in the cloacal microbiota of indoor- vs outdoor-layers across farms. Eight layer flocks (four indoor, four outdoor) from five commercial poultry farms were sampled. Indoor and outdoor flocks with the same rearing flock of origin, age, and breed were selected. In each flock, cloacal swabs were taken from ten layers, and microbiota were analysed with 16S rRNA gene amplicon sequencing. RESULTS: Housing type (indoor vs outdoor), rearing farm, farm and poultry house within the farm all significantly contributed to bacterial community composition. Poultry house explained most of the variation (20.9%), while housing type only explained 0.2% of the variation in community composition. Bacterial diversity was higher in indoor-layers than in outdoor-layers, and indoor-layers also had more variation in their bacterial community composition. No phyla or genera were found to be differentially abundant between indoor and outdoor poultry houses. One amplicon sequence variant was exclusively present in outdoor-layers across all outdoor poultry houses, and was identified as Dietzia maris. CONCLUSIONS: This study shows that exposure to an outdoor environment is responsible for a relatively small proportion of the community variation in the microbiota of layers. The poultry house, farm, and rearing flock play a much greater role in determining the cloacal microbiota composition of adult laying hens. Overall, measuring differences in cloacal microbiota of layers as an indicator for the level of exposure to potential pathogens and biosecurity seems of limited practical use. To gain more insight into environmental drivers of the gut microbiota, future research should aim at investigating community composition of commercial layer flocks over time.

15.
Transbound Emerg Dis ; 67(2): 661-677, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31587498

RESUMO

Free-range poultry farms have a high risk of introduction of avian influenza viruses (AIV), and it is presumed that wild (water) birds are the source of introduction. There is very scarce quantitative data on wild fauna visiting free-range poultry farms. We quantified visits of wild fauna to a free-range area of a layer farm, situated in an AIV hot-spot area, assessed by video-camera monitoring. A total of 5,016 hr (209 days) of video recordings, covering all 12 months of a year, were analysed. A total of 16 families of wild birds and five families of mammals visited the free-range area of the layer farm. Wild birds, except for the dabbling ducks, visited the free-range area almost exclusively in the period between sunrise and the moment the chickens entered the free-range area. Known carriers of AIV visited the outdoor facility regularly: species of gulls almost daily in the period January-August; dabbling ducks only in the night in the period November-May, with a distinct peak in the period December-February. Only a small fraction of visits of wild fauna had overlap with the presence of chickens at the same time in the free-range area. No direct contact between chickens and wild birds was observed. It is hypothesized that AIV transmission to poultry on free-range poultry farms will predominantly take place via indirect contact: taking up AIV by chickens via wild-bird-faeces-contaminated water or soil in the free-range area. The free-range poultry farmer has several possibilities to potentially lower the attractiveness of the free-range area for wild (bird) fauna: daily inspection of the free-range area and removal of carcasses and eggs; prevention of forming of water pools in the free-range facility. Furthermore, there are ways to scare-off wild birds, for example use of laser equipment or trained dogs.


Assuntos
Galinhas/virologia , Vírus da Influenza A/fisiologia , Influenza Aviária/transmissão , Doenças das Aves Domésticas/transmissão , Animais , Animais Selvagens , Aves , Charadriiformes , Patos , Fazendas , Feminino , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Países Baixos , Aves Domésticas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Gravação em Vídeo
16.
Poult Sci ; 98(12): 6542-6551, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541252

RESUMO

Interspecies transmission of fecal microbiota can serve as an indicator for (indirect) contact between domestic and wild animals to assess risks of pathogen transmission, e.g., avian influenza. Here, we investigated whether oral inoculation of laying hens with feces of wild ducks (mallards, Anas platyrhynchos) resulted in a hen fecal microbiome that was detectably altered on community parameters or relative abundances of individual genera. To distinguish between effects of the duck inoculum and effects of the inoculation procedure, we compared the fecal microbiomes of adult laying hens resulting from 3 treatments: inoculation with wild duck feces (duck), inoculation with chicken feces (auto), and a negative control group with no treatment. We collected cloacal swabs from 7 hens per treatment before (day 0), and 2 and 7 D after inoculation, and performed 16S rRNA amplicon sequencing. No distinguishable effect of inoculation with duck feces on microbiome community (alpha and beta diversity) was found compared to auto or control treatments. At the individual taxonomic level, the relative abundance of the genus Alistipes (phylum Bacteroidetes) was significantly higher in the inoculated treatments (auto and duck) compared to the control 2 D after inoculation. Seven days after inoculation, the relative abundance of Alistipes had increased in the control and no effect was found anymore across treatments. These effects might be explained by the perturbation of the hen's microbiome caused by the inoculation procedure itself, or by intrinsic temporal variation in the hen's microbiome. This experiment shows that a single inoculation of fecal microbiota from duck feces to laying hens did not cause a measurable alteration of the gut microbiome community. Furthermore, the temporary change in relative abundance for Alistipes could not be attributed to the duck feces inoculation. These outcomes suggest that the fecal microbiome of adult laying hens may not be a useful indicator for detection of single oral exposure to wild duck feces.


Assuntos
Galinhas/microbiologia , Patos/microbiologia , Fezes/microbiologia , Microbiota , Vacinação/veterinária , Animais , Animais Selvagens/microbiologia , Feminino , RNA Ribossômico 16S/análise
17.
Sci Rep ; 8(1): 8533, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867092

RESUMO

The objective of this study was to identify effective reporting thresholds for suspicions of both highly pathogenic (HPAI) and low pathogenic avian influenza (LPAI) outbreaks in layer farms. Daily mortality and egg-production data from 30 Dutch farms with no record of AI infection were analysed and thresholds set. Mortality rates above or egg-production below these thresholds for two consecutive days would trigger an alarm sign. The following thresholds were identified for mortality: (i) A mortality threshold of 0.08% or 0.13% for layers kept indoors or with free-range access respectively, (ii) a 2.9 times higher mortality than the average weekly mortality of the previous week, and iii) a moving-average threshold that could be implemented for each specific farm. For egg-production: (i) a weekly ratio lower than 0.94 in egg-production drop, and (ii) a moving-average threshold. The accuracy of these thresholds was assessed by quantifying their sensitivity, specificity and time to trigger disease detection using data from 15 infected and 31 non-infected farms. New thresholds were more sensitive and signalled infection two to six days earlier than the presently used thresholds. A high Specificity (97-100%) was obtained by combining mortality and egg production thresholds in a serial approach to trigger an alarm.


Assuntos
Criação de Animais Domésticos/métodos , Galinhas/virologia , Notificação de Doenças , Influenza Aviária , Doenças das Aves Domésticas , Animais , Feminino , Influenza Aviária/diagnóstico , Influenza Aviária/mortalidade , Influenza Aviária/prevenção & controle , Óvulo , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/mortalidade , Doenças das Aves Domésticas/prevenção & controle
18.
Vet J ; 232: 20-22, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29428086

RESUMO

The transmissibility of the H7N1 highly pathogenic avian influenza virus (HPAIV), which caused a large epidemic in commercial poultry in Italy in 1999-2000, was studied in chickens and compared with that of the low pathogenic precursor virus (LPAIV). Group transmission experiments using the HPAIV were executed to estimate the infectious period (IP), the transmission parameter (ß) and the basic reproduction number (R0). These estimates were then compared with those reported for the LPAIV. The estimated ß and R0 were similar for both viruses, whilst the IP of the LPAIV was longer than that of the HPAIV. These findings indicate that transmissibility from chicken-to-chicken alone does not appear to confer an advantage for this LPAIV to evolve to a HPAIV.


Assuntos
Galinhas/virologia , Vírus da Influenza A Subtipo H7N1/patogenicidade , Vírus da Influenza A/patogenicidade , Influenza Aviária/transmissão , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Influenza Aviária/epidemiologia , Itália/epidemiologia
19.
Emerg Infect Dis ; 23(9): 1510-1516, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28820139

RESUMO

Using annual serologic surveillance data from all poultry farms in the Netherlands during 2007-2013, we quantified the risk for the introduction of low pathogenicity avian influenza virus (LPAIV) in different types of poultry production farms and putative spatial-environmental risk factors: distance from poultry farms to clay soil, waterways, and wild waterfowl areas. Outdoor-layer, turkey (meat and breeder), and duck (meat and breeder) farms had a significantly higher risk for LPAIV introduction than did indoor-layer farms. Except for outdoor-layer, all poultry types (i.e., broilers, chicken breeders, ducks, and turkeys) are kept indoors. For all production types, LPAIV risk decreased significantly with increasing distance to medium-sized waterways and with increasing distance to areas with defined wild waterfowl, but only for outdoor-layer and turkey farms. Future research should focus not only on production types but also on distance to waterways and wild bird areas. In addition, settlement of new poultry farms in high-risk areas should be discouraged.


Assuntos
Surtos de Doenças , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A/classificação , Influenza Aviária/epidemiologia , Carne/virologia , Doenças das Aves Domésticas/epidemiologia , Animais , Animais Selvagens/virologia , Galinhas , Patos , Monitoramento Epidemiológico , Fazendas/organização & administração , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H7N1/isolamento & purificação , Vírus da Influenza A Subtipo H7N1/patogenicidade , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Países Baixos/epidemiologia , Aves Domésticas , Doenças das Aves Domésticas/virologia , Risco , Perus , Virulência
20.
PLoS One ; 12(3): e0173470, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278281

RESUMO

Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs.


Assuntos
Animais Selvagens/virologia , Monitoramento Epidemiológico/veterinária , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Aves Domésticas/virologia , Animais , Meio Ambiente , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/enzimologia , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Neuraminidase/genética , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA